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SUMMARY 

A method is presented for calculating the properties of com- 
pressible laminar boundary layers with heat transfer and arbitrary pressure 
gradients. The method is based on the concept of combining integral relat- 
ions and similarity solutions. It differs, however, from the classical 
technique in that both the momentum and the energy integral equations are 
used. 

The method is applied to calculate the self-induced pressure 
interaction problem in hypersonic flows. The solutions cover the complete 
range of interaction and show good agreement with other more exact theore- 
tical results as well as experimental data. 

The pressure interaction problem is also considered for 
real gases using weakly dissociated boundary layers. Calculations are 
presented for a flat plate with a fully catalytic surface in a stream of oxy- 
gen. The results show that under these conditions the boundary layer 
characteristics vary only slightly from the perfect gas case. 
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1. INTRODUCTION 

The development of boundary layer theory has continued 
since -it was first introduced by Prandtl in 1904. The theory allows one to 
obtain approximate solutions to the Navier-Stokes equations for ,the viscous 
flow around moving bodies. The flow field around a body is divided into 
two parts. In the external part, the effect of the viscosity of the fluid is 
neglected and the Navier-Stokes equations reduce to the Euler equations. 
In the inner part of the flow field, which is called the boundary layer, vis- 
cosity has a strong influence; but certain terms in the Navier-Stokes equa- 
tions can be neglected to give the boundary layer equations. At high Rey- 
nolds numbers the boundary layer is very thin and the displacement of the 
external flow is negligible. This enables one to solve for the external flow 
field over the body by means of the Euler equations. These solutions are 
then used as external boundary conditions for the boundary layer equations. 
The boundary layer equations are still complex; they are a set of nonlinear 
partial differential equations. 

In practical engineering applications, boundary layer theory 
provides a method for predicting with accuracy the shear stress and the 
heat transfer at the surface of bodies moving in fluids. It also provides an 
explanation of the mechanism of flow separation. Because of its useful- 
ness in practice and its mathematical complexity, boundary layer theory 
is still one of the most interesting subjects in the field of fluid mechanics. 

Thorough discussions of boundary layer theory are given in 
many standard works (for instance, Refs. 5 to 9). Due to the great mathe- 
matical difficulties encountered in solving the boundary layer equations, 
especially when the effects of compressibility, pressure gradients, and 
heat transfer are included, only very few precise numerical solutions have 
been obtained. Under certain conditions, such as specific types of free- 
stream pressure or surface temperature distributions, the boundary layer 
equations can be reduced to a system of ordinary differential equations by 
means of a similarity transformation. These are called similar solutions. 

Because of the difficulties in obtaining exact solutions for 
general conditions and because similar solutions are restricted to certain 
specific types of conditions, approximate methods have been developed. A 
class of such methods is based on von Karman’s momentum integral. These 
integral methods make certain assumptions as to the form of the unknown 
functions, which reduces the problem to solution of a set of ordinary 
differential equations. Pohlhausen developed a method for incompressible 
flow by assuming a quartic velocity profile. By satisfying suitable boundary 
conditions at the wall, the velocity profile is reduced to a function of one 
independent parameter. The x dependency of this parameter is then deter- 
mined by solving the von Karman momentum integral equation . 

This method can also be extended to the compressible 
boundary layer. In this case, the energy equation is also introduced in the 



integral form. Similarly, a simple polynomial profile of the total enthalpy 
is assumed. Each of the boundary layer profiles are then reduced to a 
function of one independent parameter by satisfying the boundary conditions. 
These parameters are then determined by the simultaneous solutions of 
the two integral equations. 

The concept of the combination of the integral method and similar 
solutions was first introduced by Thwaites (Ref. 1) for the case of incom- 
pressible flow with an arbitrary pressure gradient. His approach was to 
obtain a functional relationship between the shear stress at the wall, the 
local pressure gradient and the ratio of displacement thickness to momen- 
tum thickness. Instead of assuming a type of profile for the unknown funct- 
ions, this relationship was obtained from the known incompressible similar 
solutions. 

Rott and Crab-tree (Ref. 2) have extended this concept to the 
case of compressible flow over an insulated body, and Cohen and Reshotko 
(Ref. 3) to the case of bodies with heat transfer. These two works are 
essentially applications of the classical momentum-integral technique. In 
the case of bodies with heat transfer, the consequence of this approach is 
that the momentum -integral equation and energy-integral equation cannot 
be satisfied simultaneously, and the energy equation is usually ignored. 
The heat transfer is obtained from the similar solutions through the correla- 
tion parameter which is determined from the momentum integral equation 
alone. The energy integral equation could also be used, however, the two 
answers disagree in general. With the energy integral equation ignored, in 
certain circumstances, the method may give the velocity field accurately 
while predicting the temperature field with only low accuracy. 

In order to improve the accuracy of the computation of heat 
transfer, the energy integral equation must also be considered in the formu- 
lation of the integral relations. The first portion of this paper is concern- 
ed with developing such a method. The present approach is still based on 
the simple one-parameter correlation concept. However, the energy in- 
tegral equation is considered simultaneously with the momentum integral 
equation such that the variation of the ratio of ,the energy defect thickness 
to momentum defect thickness, which has a strong effect on the computation 
of heat transfer, is taken into account. The results show that higher 
accuracy is obtained in predicting heat transfer from the leading edge to 
the separation point. However, the skin friction coefficient is predicted 
with greater accuracy towards the leading edge but the values are poorer 
near the separation point than those obtained from the momentum integral 
alone. 

The present method is then applied to calculate the self- 
induced pressure interaction problem in hypersonic flows. The pressure 
interaction between the viscous boundary layer and the inviscid flow on a 
body moving at hypersonic speeds results from the relatively large out- 
ward streamline deflection induced by a thick boundary layer. The present 
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integral method makes it possible to construct a solution which is valid 
through the complete interaction range. 

In high-speed boundary-layer flow, the temperature inside 
the boundary layer may become very high because of the large viscous 
dissipation and real gas effects can thus alter the properties of the flow. 
The effects of a weakly dissociating diatomic gas like oxygen are examined 
for -the pressure-interaction problem on a fully catalytic flat plate. It is 
found that under these conditions the boundary layer properties depart only 
slightly from those of a perfect gas. 

2. INTEGRAL METHOD FOR TWO-DIMENSIONAL AND AXISYMMETRIC I__.---. --. -..- 1. ~~~~- 
LAMINAR BOUNDARY LAYERS IN COMPRESSIBLE FLOWS 

2.1 Boundary Layer Equations 

Consider the steady flow of a perfect gas over an unyawed 
body, using the coordinate system (x, y) where x is measured along the 
body surface from the nose or leading edge and y is measured along the out- 
ward normal from the body surface. Making the usual assumption that the 
boundary layer thickness is small compared to the longitudinal body radius 
of curvature and that the centrifugal forces are negligible, the equations of 
the steady, compressible laminar boundary layer for a perfect gas are 

Continuity: 

2g+AfSL& 
a2 (2.1) 

x - Momentum: 

pby ax t ,.au = 
3 

y - Momentum: 

(2.2) 

Energy: 

where u and v denote the velocity components in the x and y directions, 
respectively and H is the total enthalpy, 

H=h++u’ 

j = 0 is for two-dimensional flow and j = 1 for axisymmetric flow. The 
distance r = r (x, y) is the cylindrical radius from the axis of symmetry 
to any point in the boundary layer. 
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The gas is assumed to be thermally perfect. The equation of 
state is given by 

% =R-J- 

Equations (2. 1) to (2.5) constitute the system of equations for steady, 
laminar-boundary-layer flow of a perfect gas over an unyawed body. These 
equations are similar to those appearing in Ref. 5, except that in the latter 
the radius r is approximated by rb, the radius from the axis of symmetry 
to the body surface. The present equations contain transverse curvature 
terms specified by r for axisymmetric flows. (Refs. 25, 29. ) 

The boundary condition on the velocity at the wall follows 
from the requirement of no slip, and the temperature may satisfy the con- 
dition that there is no heat transfer at the wall, or the surface temperature 
may be specified. The low Reynolds number effects such as velocity slip 
and temperature jump on the surface are not considered. Hence at y = 0, 
without suction or blowing from the surface, 

IA = u= 0 
and (2.6a) 

either ar=, 
32 

At the outer edge of the boundary layer, the values of u and T are specified 
by the inviscid flow solution. Hence at y = co 

IA = Ue 

or 
-I- = Te 

H = He 

(2.6b) 

2. 2 Transformation 

The transformation of coordinates which we introduce is the 
generalized form of the usual Lees -Levy-Dorodnitsyn transformation. The 
transformation can be written (Ref. 5, 25) 

from which 

(2.7a) 

(2. 7b) 



We further define the following dimensionless quantities as dependent 
variables 

(2.8) 

qpplying the coordinate transformation (2. 7) and the non- 
dimensional quantities (2.8), and assuming that the Prandtl number -is con- 
stant, the momentum and’the energy equations can be transformed with the 
aid of the continuity equation.into the form 

where 

N== 
?brb 

r =- = 
f?? IAe rba 

(2. 9) 

3 (2. 10) 

(2.11) 

(2.12) 

The function r which appears in the axisymmetric case governs the 
effect of transverse curvature and 0 is the local slope of the body. 

The boundary conditions are reduced to 

f (0) =o, 
F ,)(0)=0, 

either gto) = gb(T) 

or gr)(o) = 0 ; 

(2. 13a) 
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and iq -+J 

9--r 
at I)-‘00 (2. 13b) 

The subscript 7 indicates partial differentiation with respect to 1 . 

Equations (2. 9) to (2. 12) are the fundamental equations for 
a compressible laminar boundary layer to be solved under the boundary 
conditions (2. 13). They are in general nonlinear partial differential equa- 
tions. Under certain mathematical restrictions, these equations can be 
reduced to ordinary differential equations. The solutions of the latter which 
show similitude under these restrictions are called similar solutions (Ref. 
5). Similar solutions have been obtained for two-dimensional flows (for 
example, Ref. 10 and 14) and for axisymmetric flows (Ref. 25). 

2. 3 Integral Equations 

We now formulate our approximation method using integral 
relations, following the classical concept of the von Karman momentum 
integral. If we integrate the transformed equations of momentum and 
energy (2. 9) and (2. lo), with respect to $) through the boundary layer, 
and introduce the following integrals, namely the dimensionless displace- 
ment, momentum, and enthalpy-defect thicknesses respectively, 

A= j#- ( 9 - fq ) 4 
(2. 14a) 

(2. 14b) 

A = J (2.14c) 

a 
we have 

f "lob 

dr\ 
+ +- 

5 

Here we have used the relation 

which holds for a perfect gas. 

(2.15) 

(2.16) 

(2.17) 

For constant wall temperature distribution, the energy in- 
tegral equation can be written as 
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(2.18) 

where 

(2.19) 

Note: This is equivalent to define a new nondimensional variable for the 
enthalpy 

I= H-Hb 
He-l-lb 

and the energy integral equation becomes 

Ir)b -= 
Pr 

with 

(2.18~) 

(2.19a) 

The integral equations, Eqs. (2. 15) and (2. 16) are exactly 
the same for two-dimensional flows and axisymmetric flows. The effect of 
transverse curvature for axisymmetric flows does not appear explicitly in 
the equations (Ref. 25). 

2. 4 Methods of Solution 

The momentum and the energy equations in integrated forms 
are given by Eqs. (2. 15) and (2. 18) with thicknesses defined by Eq. (2. 14). 
These two equations can be rewritten as follows 

(2.20) 

(2.21) 

The fundamental requirement for a solution of these two 
equations is a correlation for the terms on the right hand sides. If some 
relation is assumed, then these equations can be integrated. In Pohl- 
hausen’s method (Refs. 6, 8), the assumption of the forms of the velocity 
profile and the total enthalpy profile serves this purpose. By satisfying a 
suitable number of boundary conditions at the wall and at the edge of the 
boundary layer, each of these profiles can be reduced to a function of one 
independent parameter. Therefore, the correlations of the Eqs. (2. 20) 
and (2.21) are now depended on two parameters, namely, A for the 
velocity profile and x for the total enthalpy profile. For any correlation 



quantity Q, one can obtain a functional relation Q( h , X ) as illustrated in 
the sketch in Fig. 1. Once these correlations are assumed, the Eqs. 
(2. 20) and (2. 21) can be solved simultaneously to yield a unique relation 
of A and 3( . This relation is shown by the dashed line on the Q( )r , x ) 
surface in Fig. 1. 

In Thwaites’ method (Ref. l), or the extension given by 
Cohen and Reshotko (Ref. 3), instead of assuming types of profiles, the 
functional relations from the exact similarity solutions determine the rela- 
tions between h and x . Thus for a specified surface temperature, a 
single curve results for the correlation Q( x , x ) as shown in Fig. 1. If 
this correlation is applied to Eq. (2. 20), or Eq. (2. 21), only one equation 
is then required to obtain the 5 dependency of )\ or # . This is the 
basic method of one-parameter correlation. 

Though the one-parameter approach restricts the individual 
development of the parameters h and K , however, it provides a simple 
method to solve the problem with reasonably high accuracy, especially for 
cases with favourable pressure gradients and cold walls (Ref. 3). For 
cases with adverse pressure gradients and heated walls, it still provides a 
fairly good first approximation to the two-parameter methods, such as the 
methods of Tani and Poots (Refs. 13 and 11). In view of these facts, the 
following discussion will be limited to the one-parameter method and its 
improvement. 

The basic one-parameter approach of solving compressible 
laminar boundary layer equations is exemplified by the momentum integral 
method (Ref. 3), in which the momentum integral equation alone is used 
and the energy equation is ignored. The details of the formulation of this 
method is given in Appendix A. With the energy equation ignored, the re- 
sulting heat transfer is obtained from the correlation parameters which are 
derived from the similarity solutions. The energy integral equation, how- 
ever, can also be used to compute heat transfer, and the results do not 
agree with that obtained from the foregoing correlation. It has been shown 
in Refs. 4 and 5 (see also Appendix A) that, only if the thicknesses 7\ and 

Q are proportional to each other over the entire range under consideration 
will these two results be consistent. In general, the ratio K/O is not con- 
stant throughout the entire range and the variation of A /8 as a function of 

f will affect the computation of heat transfer. Hence if only the momentum 
integral equation is used then, in certain circumstances, the method may 
predict the velocity field with accuracy while the accuracy of the temperature 
field will suffer. The accuracy of predicting the heat transfer can indeed be 
improved if the variation of K/g is taken into account. This can be done, 
within the basic approach of the one-parameter method, by considering both 
the momentum integral equation and the energy integral equation at the same 
time and derive a new correlation based on both equations, as will be shown 
subsequently. 



2. 5 Method of One-Parameter Correlation 

2. 5. 1 Correlation Parameters and Reduced Integral Equation 

The d.imensionless parameters which are related to the terms 
appearing in the momentum integral Eq. (2. 20) and the energy integral Eq. 
(2. 21) can be defined and evaluated from the following expressions. 

Ratio of displacement thickness to momentum thickness 

(2.22) 

Ratio of enthalpy-defect thickness to momentum thickness 

(2. 23) 

Velocity gradient parameter 

Shear parameter 

Heat transfer parameter 

K %b v= -- 
?% I-gb 

(2. 24) 

(2. 26) 

The correlation parameters defined above indicate the be- 
haviour of the boundary layer. The velocity gradient parameter m relates? 
the external flow conditions to that of the momentum defect and the enthalpy 
defect. The “shape” of the velocity field is indicated by the value of HP. 
The relation between the momentum defect thickness and the enthalpy defect 
thickness are finally linked by the value of Q. 

If the momentum integral equation (2. 20) and the energy in- 
tegral equation (2. 21) are added together, we have 

(2. 27) 

Substituting the correlation parameters into the resulting equations, we 
finally have the reduced integral equation 
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where 
1 I+ t.IF = j+ F-Z.m- 

I + Q2 
(2.28a) 

This is ?he fundamental equation of the present approach. Its 
solution, resulting in a determination of the par -ameter m is the first stage 
in solving for the boundary layer characteristics. Then the parameter 1 
is used to determine the skin friction. and the parameter E- is used to deter- 
mine the heat transfer. The use of parameters 1 and 77 here means that 
this approach is still confined within the limit of the one-parameter correla- 
tion. Therefore the determination of skin frict.ion and heat transfer depends 
solely on the prediction of the parameter r-c. 

Since the integral equation-s Eqs. (2. 2Oj and (2. 21) are in the 
same form for both the two-dimensior.al and the axisymmetric flows, there- 
fore Eq. (2. 28) applies to both cases. However, the correlation parameters 
which are based on the solutions of Eqs. (2. 9) and (2, 10) will be different 
for two-dimensional and axisymmetric flows, In the following sections 
these two cases will be discussed separately. 

2. 5. 2 Two-Dimensional Flows 

The fundamental requirement for a solution cf Eq. (2. 28) is 
a relation between the parameters L and m. If some relation is assumed, 
then Eq. (2. 28) can be integrated. In the one-parameter correlation method 
this functional relation is determined from the known similarity solutions. 
Based on the concept of correlation, ir is assumed that the parameters 1 2 
r, HF, and Q are functions of m and gb only (Ref. 3). 

Equation (2. 28) can now be integrated to yield m as a function 
of the external flow distribiltion. If m is known at a given point on the sur- 
face, the boundary layer charact.eristics follow through. .the correlation para- 
meters. Thus if .&Q(m) is a known function for the specified wall tempera- 
ture, the wall shear is then ob:ained from the correlation Eq. (2. 25). 
Similarly, if r(m) i.s known, the heat trarlsfer can be found from the correla- 
tion Eq. (2. 26). 

The numerical techniques for injegrating Eq. (2. 28) were 
given in Refs. 1 and 3 and will not be repeated here. When the wall tem- 
perature is uniform, it is often possible lo a.pFroximate the right hand side 
of Eq. (2. 28) as a piecewise linear function of m, and an analytical solution 
of Eq. (2. 28) is then possible (ReI. 1, 3). 

If we write 

Llrn)= A-Bm (2.29) 

then by inserting Eqs. (2. 29) and ( 2. 24) into Eq. (2. 28): a simple linear 
first order ordinary differential equation results, 

10 



The equation (2. 30) can be simply integrated to yield 

where 
B’s+ 

The constant of integration C is determined at f = To as 

(2.30) 

(2.31) 

(2.32) 

If the integration starts from the leading edge of the body, then C = 0. 

Thus for given external velocity and enthalpy distributions 
and if the values of A and B are known for a specific wall temperature, the 
value of m can be determined as a function of 5 from Eq. (2. 31). The 
boundary layer characteristics follow immediately from the previously 
evaluated correlation parameters. Equation (2.31) in physical coordinates 
is in the form 

m= - kL& -y"( I- pU)-P~[(e~+~:)ue.x,2,"-'jl - P,y- 

+ (’ A p”-’ ( 1 _ p?) ‘-’ Ue d X ] 
(2.33) 

‘f. 
where d= 2--38 

$’ I+$- 
(2.34) 

P = p/f%. 
In order to compare the results of the present approach with 

those of the momentum integral method, an example of a flow with an ad- 
verse pressure gradient on a heated surface is computed. The case chosen 
here was originally computed by Poots (Ref. 11). The exact numerical 
solution is given. In this case, the external temperature varies as 

72 I+- 
T,= 

+-d (J-$X, (2.35) 
I + J$-h,Z 

and the external velocity varies as 

(2.36) 
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(2.37) 

with Pr = 1 and ~b/Hal = 2, i.e., a heated surface. 

The correlation functions for this case are evaluated from 
the similarity solutions in Ref. 10 for Pr = 1 and the Chapman and Rubesin 
temperature - viscosity law. The correlation of the function L and m for 
the present approach is given in Fig. 2, and the correlation of L and i?i for 
the momentum integral method is shown in Fig. 3. The correlations for 
computation of skin friction and heat transfer are shown in Figs. 4a and 4b 
for both approaches. All these correlation functions are tabulated in Table 
I. The values of o( and r defined in Eq. (2. 34) are 

QJ = 1.90 

e = 1.35 

And the values of d and f defined in Eq. (A. 13) are 

2 = 1. 286 
p = 3.50 

These linear approximations for the correlations L - m, 
E-i% are chosen to give good over-all agreement for the entire range of 
adverse pressure gradients. In the case of L(m), the linear approximation 
is valid only to m = -. 0228. Thus it is not possible to extend the computa- 
tion to the separation point of the boundary layer. The case with reference 
Mach number, M, = 6 is computed. The resulting skin friction and heat 
transfer as functions of the distance along the surface are shown in Fig. 5. 

The exact numerical solutions computed in Ref. 11 are also 
shown in Fig. 5 for comparison. For the heat transfer results, the present 
approach gives a higher accuracy than the momentum integral method. 
The improvement in heat transfer is consistent with the discussion given 
in Section 2.4, i. e., the energy integral equation which takes into account 
of the variation of the ratio A;/@ should also be considered. 

For a small pressure gradient, that is, from the leading 
edge to about x/x, = 0. 5, the skin friction predicted using the present 
approach lies closely to the exact solution. As the pressure gradient in- 
creases and the separation point is approached, the predicted skin friction 
falls below the exact solution and becomes increasingly poorer, while that 
obtained by the moment integral method follows the exact solution closely. 
Since for the one-parameter method, the velocity field and the temperature 
field are bound together. Therefore an improvement of the heat transfer 
by “lowering” the heat transfer curve to the exact solution (see Fig. 5) may 
cause a similar “down drift” of the skin friction. 
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However, for application to vehicle in hypersonic flight, it 
is more important to predict heat transfer accurately rather than skin frict- 
ion, because the drag of a hypersonic vehicle is caused mainly by the 
wave system which it generates, while that due to skin friction is relatively 
small. However, the heating of the surface of the vehicle affects the de- 
sign of the entire structure. Consequently, method that will predict the 
heat transfer with high accuracy is well worth developing. 

It should be realized that although the one-parameter correla- 
tion method indeed provides a good first approximation for cases with ad- 
verse pressure gradient, it is still rather arbitrary by its nature as dis- 
cussed below. Firstly, it is well known in the work of incompressible 
boundary layers that the velocity field does not depend solely on the pres- 
sure gradient parameter m (or A , as discussed in Section 2.4). There- 
fore, the correlation of L(m) does not necessarily provide the proper re- 
lation for every case (Ref. 7). Secondly, the velocity field and the tempera- 
ture field should not be bound a priori, but should be allowed to develop 
separately. Thus a further improvement of the solution can only be done by 
relaxing all these restrictions as demonstrated by the two parameter meth- 
ods (Refs. 13 and 11). It is also in doubt that the one-parameter correla- 
tion method can be applied to flows with a sudden change of pressure field 
preceded by a well developed boundary layer, such as some examples 
illustrated in Ref. 12. This is because the actual boundary layer cannot 
adjust itself quickly to behave like the similarity profiles which are used in 
the correlation. However, if the pressure gradient is favourable and is 
roughly linear, the use of the one-parameter correlation method should 
lead to results with high accuracy (Refs. 1, 3 and 7). 

2. 5. 3 Axisymmetric Flows 

For flows over an axisymmetric body, similar solutions of 
the boundary layer equation can be obtained in a similar way to those for 
two-dimensional flows but with one more mathematical constraint (Ref. 25). 
This condition appears in Eq. (2. 12) and is directly related to the trans- 
verse curvature of the body. If the boundary layer is thin in comparison 
with the body radius, then r is approximately equal to unity. If r is 
approximated by unity, which is usual for general boundary-layer flows 
except those over an extremely slender body or at very high speed, then 
the equations of axisymmetric flow are in the same form as the two-dimen- 
s ional ones. The results obtained from the two-dimensional equations can 
be applied to the axisymmetric case through a coordinate transformation 
(Ref. 6, 7). 

If r > 1, the boundary layer is not thin in comparison with 
the body radius, then the additional constraint for obtaining similar solutions 
is 

G= ‘JF ‘OS ’ = consfont 
Pe Ue V,’ 

(2.38) 
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The correlation parameters now are also a function of G in 
addition to the original parameters m and gb. Equation (2. 28) can now be 
integrated for axisymmetric flow if both gb and G are constant. 

Some similar solutions for axisymmetric flows with r > 1 
have been given in Ref. 25. However, the solutions were obtained only for 
some particular conditions which do not provide adequate details that can be 
used to evaluate correlation parameters. Hence axisymmetric flows con- 
sidered in the following sections will be limited to cases with r = 1 only. 

3. APPLICATION TO HYPERSONIC LAMINAR BOUNDARY LAYERS 

3. 1 Basic Equations 

For a slender body moving at hypersonic speed, the flow 
field outside the body can be divided into three regions: (1) in front of the 
shock wave extending from the leading edge or nose of the body, the flow 
is undisturbed; (2) a boundary layer of viscous flow on the surface of the 
body; (3) in between the shock wave and the boundary layer there exists a 
layer of inviscid flow. We will consider the body to be thin and the hyper- 
sonic small-disturbance theory applies to the inviscid flow outside the 
boundary layer. 

The method developed in the previous section can be readily 
applied to compute hypersonic laminar boundary layers. The following 
formulation is for two-dimensional flows. (It will be specified if axi- 
symmetric flows are considered. ) 

In hypersonic flow the following conditions apply, 

and for flow over a slender body, 

up s uca (3.2) 

With these approximations Eq. (2. 33) for calculating the velocity gradient 
parameter m can be reduced to the following form with the integration 
starting from the leading edge of the body. 

(3.3) 

where 
o\= Z-%B 

Equation (3.3) is now in terms of physical coordinates which is useful for 
practical problems. 
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The correlation parameters m, 1. , I, HF and Q defined in 
Eqs. (2. 22) to (2. 26) are now evaluated from the similarity solutions of 
Ref. 14. These similar solutions are obtained under the conditions that the 
Prandtl number is 0. 7 and in the limiting situation of a locally hypersonic 
flow where ue2/2He + 1. The power law relation for viscosity and tem- 
perature is employed with UJ = 0. 7. It has been shown recently that the 
Pr = 1 solutions do not represent closely an actual fluid flow especially in 
predicting the heat transfer, which is particularly important in practical 
applications to high speed flow (Ref. 15). 

The quantities= m, i 
Additional parameters w 

, ??, HF and Q are listed in Table II. 
, 7~ , and cs/cll are also listed. 

These will be used for co*mputation of displacement thickness, heat transfer 
and skin friction respectively in Sec. 3. These quantities are also plotted 
in Figs. 6 to 10. 

The quantities A, B and o( are evaluated from the correla- 
tion parameters given in Sec. 2. 5. 1 and are listed in Table III. For a 
given pressure distribution, if we know the value of A and o( for the speci- 
fied surface temperature, Eq. (3. 3) will yield the value of m as function of 
X. In the following we will derive some boundary layer characteristics and 
the expressions for calculating skin friction and heat transfer. 

3. 2 Displacement Thickness 

The displacement thickness plays a dominant role in some 
of the hypersonic boundary layer problems such as the self-induced pressure 
interaction. It is defined by 

Through the coordinate transformation and the integral thicknesses defined 
by Eq. (2. 14) we can write 

(3.5) 

Since in hypersonic flow, % >>/ 

therefore $* can be approximated as 

(3. 5a) 

This is the expression we will use for all computations. From Eq. (3. 3) 
and the definition of m and HF, Eq. (3. 5) can be reduced to the form in 
physical coordinates 
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(3.6) 

where 

and 

The quantity (1 + HFJ2/ 1 + Q2 can be evaluated from the correlation para- 
meters once the value m(x) is known and the displacement thickness is com- 
pletely determined. The values of this quantity are listed in Table II and are 
also plotted in Fig. 7. 

3. 3 Skin Friction Coefficient and Heat Transfer Coefficient 

The skin friction coefficient is defined as 

where Zb is the shear stress on the surface of the body. 

In the transformed coordinates, we can write 

(3.7) 

(3.8) 

Using the hypersonic approximation and the correlation parameters, it can 
be expressed in the form 

(3.8a) 

The quantity AZ,! depends on m(x) for a specified surface temperature 
and can be determined from the previously tabulated parameters. 

The heat transfer coefficient is defined by 

Ck = 8 
?OJ Um ( H”, - Hb) 

(3. 9) 

where qb is the rate of heat transfer to the surface of the body. In the 
transformed coordinates 

(3.10) 
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The final form in terms of the correlation parameters is thus 

(3.10a) 

Again the quantity 
6 

J-=&Q) - r can be determined as a function of m(x) 
for a specified sur ace temperature. 

A form similar to Reynolds’ analogy can be written through 
the correlation parameters as 

(3.11) 

Equations (3. 10) and (3. 11) give explicit expressions for the 
calculations of skin friction and heat transfer in a hypersonic boundary 
layer for a specified pressure distribution. The quantities JnQ’ F/Q 
and &/ Ch are evaluated from the correlation parameters and are plotted 
in Figs. 8 and 9 respectively for convenience. 

4. HYPERSONIC LEADING EDGE SELF-INDUCED PRESSURE INTERACTION 

4. 1 Fundamental Equations for Boundary Layer and Inviscid Flow 

The self-induced pressure interaction between the viscous 
and the inviscid flows on a slender body moving at hypersonic speed results 
from the relatively large outward streamline deflection induced by the thick 
boundary layer. At hypersonic speed, the boundary layer displacement thick- 
ness as shown in Eq. (3. 6) is proportional to the reciprocal of the square 
root of the Reynolds number and to the square of the Mach number. 

If the free stream deflection can be approximated by the 
slope of the displacement thickness of the boundary layer, the flow angle 0e 

is thus proportional to the square of the Mach number. The induced pressure 
due to the flow deflection is of the order of Ma0e (Ref. 5), thus 

is proportional to the cube of the free-stream Mach number. Hence for 
hypersonic flow, even at high Reynolds number, the pressure induced by 
the thickness of the boundary layer is no longer negligible in general. 
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The self-induced pressure interaction can be divided into 
asymptotic regions, namely the strong and the weak intereactions (see 
sketch in Fig. 13). In the weak interaction region, the effects produced by 
the self-induced pressure gradient are essentially perturbations super- 
imposed on an already existing uniform flow. The strong interaction region 
is characterized by the fact that the streamline inclinations induced by the 
viscous layer are large and the pressure gradient and viscous stress 
gradient terms are of the same order of magnitude. Thus the strong inter- 
action region is close to the leading edge, while the weak interaction region 
is farther downstream. Between them there is an intermediate region in 
which the interaction is neither weak nor strong and the solutions are not 
of an asymptotic nature. 

A number of papers have been published concerning the 
interaction problem. A complete discussion of this problem with a review 
of previous investigations is given in Ref. 5. Most of the previous investi- 
gations deal predominantly with the asymptotic regions using either pertur- 
bation or approximate methods to solve the boundary layer equations with 
the pressure gradient in these equations determined from the effective body 
shape. Solutions valid through the complete interaction range have been ob- 
tained by either numerical integration of the complete boundary layer equa- 
tions (Refs. 19 and 20 for example) or by approximations such as the 
Karman-Pohlhausen method (Refs. 16 and 17) or the local-similarity method 
(Ref. 14). In the following section, an attempt is made to obtain an approxi- 
mate solution of this problem valid through the whole range. By using the 
method developed in the previous sections it is possible to provide a simple 
formulation which will give a higher accuracy to the solution than the local- 
similarity method and with much less effort than the exact numerical 
solutions. 

A flow model similar to the one described in Section 3. 1 is 
used. The leading edge or the nose of the body is assumed to be sharp so 
that the effect of bluntness is negligible. We assume further that an effective 
body can be constructed, the thickness of which equals the sum of that of the 
original body and the displacement thickness of the boundary layer. The 
pressure field of the external inviscid flow is then determined by the effect- 
ive body shape. This assumption of an effective body does not in fact match 
the viscous and the inviscid flows. It does, however, provide a good approxi- 
mation (Ref. 5) and allows the viscous and the inviscid flows to be treated 
separately. 

The equations developed in Section 3. 1 and 3. 2 can readily 
be applied to this problem. We rewrite the pressure gradient parameter 
m and the displacement thickness b” as 

(4.1) 
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(4.2) 

The tangent-wedge relation is used as the solution to the ex- 
ternal inviscid flow because of its simplicity and the explicit relation be- 
tween the local pressure and the local flow inclination. Hence the pressure 
distribution is known once the effective shape of the body is given. The 
tangent-wedge formula (Ref. 5) is given by 

(4.3) 

where 8, is the local slope of the effective body which consists of the geo- 
metric s1op.e and the gradient of the displacement thickness 

This approximation without a centrifugal correction is accurate to order 
(M, Qe)2. S’ mce the curvature of the outer edge of the boundary layer on a. 
slender body is small, the centrifugal effect on the external flow is negligible 
throughout most part of the interaction range, except very close to the lead- 
ing edge of the body. 

In general, the shape of the slender body is specified with 
known surface temperature. Then we have to solve Eqs. (4. l), (4. 2) and 
(4. 3) simultaneously to obtain the pressure distribution and consequently 
the boundary layer properties. 

Before we proceed to the solution of these equations, some 
parameters are introduced so that the equations will be in non-dimensior,.al 
form. If we introduce the interaction parameter z 

The nondimensional form of the displacement thickness is thus 

Equations (3. 3) and (3. 6) then reduce to 

(4.7) 

(4.6) 
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and the tangent-wedge relation becomes 

(4. 9) 

This set of equations forms a complicated integro-differential system for 
the variables pe/po-, and as’ , and prevents further attempts to obtain 
analytical solutions. However, these equations are in a form which lends 
itself to a successive approximation scheme. They also provide a direct 
and simple method to obtain solutions to the asymptotic regions. 

4. 2 Asymptotic Solutions 

In the weak interaction region, the flow deflection resulting 
from the growth of the boundary layer is small. Under this condition, the 
local hypersonic similarity parameter K must be less than or of the order 
of one, where K is defined as 

K= M, (8bt d*) 
dx 

(4. 10) 

If KI/ the induced pressure expressed by the tangent-wedge formula 
can be exianded in a series for small values of K (Ref. 5) 

I + r/q + y’J K’ i- o(K3) (4. 11) 

For sufficiently small pressure gradients, Eq. (4. 2) shows that 

6” Y-l t4czl-F --a- 
x zA?zL 

Therefore for the weak interaction on a flat plate (9b = 0), the hypersonic 
similarity parameter K is found to be proportional to the interaction para- 
meter % 

(4.12) 

This permits an expansion of pressure in terms of x as 

p= I + a,E + Q25YS.. (4. 13) 
m 

The coefficient al and a2 can then be determined by the Eqs. (4.8) and 
(4. 9) and yield 

a, = 
Y(t’-l) 

2 
(4. 14a) 
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b , = Y(~+l)l~-If(I+HF)zA 
32 I + Q’ 

(4. 14b) 

The value of (1 + HF>~ /(l + Q2)is taken at m = 0. This is done because this 
quantity is a slowly varying function of m as shown in Fig. 7. Thus an 
appropriate value within the asymptotic range of the problem may be chosen 
without introducing significant error. 

In the strong interaction region, the flow deflection resulting 
from the growth of the boundary layer is significant, and K2 B 1. The 
tangent-wedge formula can be expanded for large values of K as (Ref. 5) 

(4. 15) 

The pressure variation at this region is close to p d X” . Equation (4. 2) 
shows for this condition that 

Since pe/po,wK2 , therefore for the strong interaction on a flat plate the 
hypersonic similarity parameter K is proportional to the square root of the 
interaction parameter 

(4. 16) 

The coefficients a2, b2, c2 , . . . can then be determined from Eqs. (4.8) 
and (4. 9) and yield 

3 ,Jlcr-r) a, = - -- 
4 J3-0( 

b = (01-4)(3r+l) 
1 

(d-4)(Y+I) 

(4. 18a) 

(4. 18b) 

Here again, the quantity (1 + HIJ2 /( 1 + Q2)is evaluated at the value of m 
corresponding to p o( x-i . 

These coefficients for both the weak and the strong interactions 
are evaluated for Pr = 0. 7 and are listed in Table IV. Comparison is also 
made with results obtained by other authors. 
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Once the asymptotic solutions of the strong and the weak 
interaction is known, the skin friction and heat transfer can be computed 
immediately. The pressure gradient parameter m in Eq. (4. 2) and the 
heat transfer coefficient in Eq. (3. 6) are used for the computation. The 
results are shown in the following. 

For weak interactions 

) (4. 19) 

)X3 ]“* p -I- 
?F (4.20) 

For strong interactions 

n-l= +A [&- 3 “‘+*+ 
14-00(3--00 QJ 

(4.21) 

(4. 22) 

The quantity (,./-I Q 1 r is given in Fig. 8 as a function of m for 
different surface temperatures. The cross-plot of the linear approximation 
of this correlation against gb is given in Fig. 12. The skin friction coefficient 
can be computed from the Reynolds analogy Cf/Ch using the values of m 
and Mo,3Ch. The Reynolds analogy is given in Fig. 9. 

It is interesting to note that the equilibrium wall temperature 
for an insulated plate is altered even to the first order in z in the weak 
interaction region. This was first pointed out in Ref. 18 (see also Ref. 9), 
and can be shown by the present approach. For flows with small pressure 
gradient, the equilibrium temperature on an insulated surface is related 
to the parameter m as (see Table II) 

Tb 
- = 0.819 - 0.65 m 
7-i (4. 23) 

These values are evaluated from similar solutions in this report and a 
linear approximation is used for the correlation. For the weak interaction 
on a flat plate, the value of m is given in Eq. (4. 19). Therefore, the varia- 
tion of the equilibrium temperature on the surface of an insulated flat plate 
is 

For Y = 1.4, Pr = 0. 7 and w = 0. 7. 
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3 = 0.819 -f-i - o.o037z+ *. (4. 25) 

The result given by Ref. 18 is for Pr = 0.72 and W = 1 

JL = 0. $48 
To 

- 0.005. +.. 3 

The slight difference in numerical value of these two results is due to the 
effect of the viscosity-temperature relationship. 

4. 3 Complete Solutions and Examples 

In the previous sections the equations for calculating the dis- 
placement thickness and the pressure gradient parameter are formulated 
(see Eqs. 4. 2 and 4.3). The tangent-wedge formula is used to govern the 
local pressure and flow inclination at the edge of the boundary layer. These 
equations are then solved numerically by an iteration scheme for different 
surface temperatures. The details of the numerical technique is given in 
Appendix B. These equations yield the pressure distribution and the 
pressure gradient parameter m as a function of the interaction parameter 
Ix . Once these are known, the skin friction coefficients and the heat trans- 

fer coefficients follow immediately as described in the previous sections. 

Several examples are calculated in order to compare th.e 
results obtained from the present method with experimental measurements 
and other theories. 

The other theoretical results which we use for comparison 
are those due to Fliigge-Lotz and Blottner (Ref. 19), who solved the 
boundary layer equations exactly by numerical methods. Like the present 
work they assumed an effective body and then used the tangent-wedge 
formula to compute the external local pressure. Their work was chosen 
for comparison because their flow model is the same as in this case, and 
the boundary layer solution is exact in their case. 

Solutions in closed form can be obtained by combining the 
present integral method and the local similarity technique. The details of 
the derivations are given in Appendix C. The results obtained by this 
method are also shown in most cases for comparison. 

Figure 14 shows a comparison of the surface pressure dis- 
tribution on an insulated flat plate with a sharp leading edge with experi- 
mental data obtained by Kendall (Ref. 21) and Bertram (Ref. 22 and 23). 
Bertram’s results obtained on a plate with a slight temperature gradient 
and heat transfer, and were corrected approximately to an insulated case. 
In general, the present results follow the trend of the experimental data 
closely an.d lie a little lower than the data. The asymptotic solutions obtain- 
ed by the present method are also shown. The numerical solution by Fliigge- 
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Lotz and Blottner gives higher values than the present solution. The local 
similarity solutions give lower values than the integral method. This 
deviation gets larger as the leading edge is approached, i. e., at large 
values of X . 

In Fig. 15, the pressure distribution on a cold flat plate ob- 
tained by the present method is compared with experimental measurement 
obtained by Hall and Golian (Ref. 24). The present results follow the ex- 
perimental data closely, except near the leading edge where the predicted 
values are higher than the experimental data. It is interesting to note that 
the present solution nearly falls on the Fliigge-Lotz and Blottner exact 
solution for Pr = 0. 72. The solution using the local similarity method, like 
the previous case, predicts lower values than the integral method and be- 
comes worse as the leading edge is approached. This is expected since 
the local similarity method is based on the assumption that p 0~ xn, and 
n is a constant locally. Thus, it neglects the upstream influence due to 
the change of the value of n. Since the displacement thickness increases 
as n decreases, (see Eq. (4. 2), in this case, the pressure gradient is 
negative). The value of n is always larger upstream from the point under 
consideration. Therefore, the displacement thickness predicted by the 
local similarity method is smaller than the actual value. Consequently, 
the induced pressure due to the displacement effect is lower. However, 
since it provides a closed form solution and is simple to calculate, an 
approximate solution to the problem can readily be obtained if high accuracy 
is not required. 

The skin friction coefficient for this case is shown in Fig. 16. 
Only the solution of Flugge-Lotz and Blottner is shown for comparison. No 
experimental data has been obtained for this case. Again, the present re- 
sult agrees very well with the more exact solution. 

The heat transfer coefficient for the same case is shown in 
Fig. 17. The experimental results were obtained by Hall and Golian in the 
same series of experiments. In general, the present results predict lower 
heat transfer rates than those obtained experimentally. The agreement with 
experiment is better at the strong and weak interaction regions. Beside the 
results of Fliigge-Lotz and Blottner, the zero pressure gradient solution 
for Pr = 0. 72 and Whalen’s solution given in Ref. 24 for strong interaction 
are also shown. The present solution approaches these more exact solutions 
asymptotically. The solution using the local similarity method gives higher 
values than the integral method and thus lies closer to the experimental data. 
This interesting point was also illustrated in Ref. 14. This is again a con- 
sequence of the assumption of locally similarity flow which neglects any 
upstream influence. The heat transfer coefficient defined in Eq. (3. 10) is 
proportional to the gradient of total enthalpy at the wall gnb. This quantity 
is given explicitly by the energy integral Eq. (2. 16), 

(2. 16) 
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With the local similarity assumption, the 5 dependency of A is neglected. 
Thus _ 

&IL=/\ 
PV 

(4. 26) 

The error due to the omission of the second term in the right hand side of 
Eq. (2. 16) can be estimated with the help of the similarity solutions as dis- 
cussed in Appendix C. This term, can be written in a similar way to Eq. 
(C. 4), 

(4. 27) 

Since the pressure gradient is decreasing from the leading edge, ‘%i 
is negative. However, the similarity solutions show that dA/dp is posi- 
tive, (see Table II, where V = rA/( r-gb)P~ 3’ ) . Therefore, the term 
neglected in Eq. (2. 16) is negative. Hence if the upstream influence is 
considered, the value of gnb will be smaller than that of the local similarity 
solutions. Therefore, the heat transfer calculation from the local simil- 
arity method will give higher values than the integral method and the other 
solutions in which the upstream influence is considered. 

4. 4 Axisymmetric Flows 

In the previous discussion of axisymmetric flows, it was 
pointed out that a general formulation including transverse curvature effects 
cannot be obtained because of the inadequate number of similarity solutions 
for r > 1. Thus we are limited to deal with cases where r can be 
approximated by unity. 

If r = 1, the axisymmetric equation can be reduced to the 
two-dimensional form through the well known Mangler transformation 
(Refs. 6 and 9). This transformation is a particular case of our original 
transformation (2. 7a), if r is replaced by rb, for the y coordinate trans- 
form. The main consequence of this transformation is that the assumption 
‘b ” 6 holds. 

The pressure gradient parameter and the displacement thick- 
ness can be written in the form (for r = 1) 

(4. 28) 

and 

-- (4.29) 

The induced pressure due to the local flow inclination can 
be approximated by the tangent cone formula, if 
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Ke = ML.0 ee =tAp,(f& + d * A x (4.39) 

where 0, is the half cone angle. Then for K, >> 1, Lees’ result for slender 
cones when the conical shock wave is not too far away from the cone sur- 
face can be used (Ref. 26) 

(4. 3 la) 

(4. 3 lb) 

where KS = Mco 9, is the half angle of the conical shock and Ke = MC0 0,. 
The relation of KS and K, can be approximated by the form 

(4.31c) 

An example is shown in Fig. 18 in order to compare the 
theoretical prediction of heat transfer with experimental measurements 
obtain by Wittliff and Wilson (Ref. 28) on a loo slender cone. The theo- 
retical prediction in general lies lower than the average of the experi- 
mental data. For a slender cone at high Mach numbers, Moo = 11 - 13, 
this discrepancy can be accounted for as arising from the neglect of the 
transverse curvature effect. A correction based on the result of Prob- 
stein and Elliot (Ref. 29) for slender cones with zero pressure gradient 
is given as 

where Chm is the heat transfer coefficient obtained through the Mangler 
transformation. Strictly speaking, this result holds only for Pr = 1 (and 
zero pressure gradient), but is used here just to show the effect of trans- 
verse curvature. The corrected curve is also shown in Fig. 18. 

5. HYPERSONIC LEADING EDGE SELF-INDUCED PRESSURE INTER- 
ACTION WITH WEAK DISSOCIATION AND INFINITE CATALYCITY _ -__ 

5. 1 Introduction and Assumption 

In hypersonic flight, real gas effects due to the inherent 
high temperatures begin to play an important role. Dissociation occurs, 
for instance, across the strong bow shock wave formed in front of a blunt 
body. The chemical reaction then carries on downstream into the boundary 
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layer and on to the surface of the body. The shock wave formed by a slender 
body, on the other hand, is not so strong that chemical reactions are likely 
to be present in the inviscid flow. The gas phase reaction present is pre- 
dominantly that of dissociation in the boundary layer because of the high 
viscous dissipation. In the boundary layer, the relative magnitudes of the 
convection and reaction rates are generally different and their coupling is 
further complicated by diffusion of the chemical species. Thus one may 
expect that the boundary layer associated with these flows will exhibit vary- 
ing degrees of chemical nonequilibrium. 

Nonequilibrium boundary layer flows have been investigated 
by several authors. Chung and Anderson (Ref. 31) used integral methods 
and obtained solutions for dissociated oxygen over an adiabatic flat plate 
with a noncatalytic surface. Solutions obtained by numerical integration of 
the complete boundary layer equations were given by Blottner (Ref. 32). 
An analytical solution is given by Rae (Ref. 35) based on a perturbation of 
the frozen solution at the leading edge. This approach was later used by 
Inger (Ref. 36) to study a flat plate boundary layer with a self-induced 
pressure field and zero catalycity on the surface. 

The presence of dissociation inside the boundary layer may 
change the properties of the boundary layer greatly from those with perfect 
gases. The energy distribution will be changed as the molecules are 
dissociated into atoms and energy is partitioned during the process. On 
the other hand, the self-induced pressure field may change the chemical 
process since the reaction rate is controlled both by temperature and 
pressure. This interplay between the pressure field and the nonequilibrium 
reaction may modify the aerodynamic heat transfer. 

In this section, the integral method associated with the local 
similarity concept is used to examine the nonequilibrium boundary layer 
with a self-induced pressure field over a flat plate. The gas is assumed- 
to be a diatomic gas mixture composed of atoms and molecules. The 
Prandtl number and the Lewis number are assumed constant. This assump- 
tion tends to break down for a highly dissociated gas because these para- 
meters are affected strongly by dissociation. For a weakly dissociated gas, 
we further assume that the specific heat is approximately that of the mole- 
cules. Thermal diffusion is also assumed to be negligible. These assump- 
tions appearto be asatisfactory engineering approximation in analyzing 
boundary layer flow over a non-ablating and highly cooled surface, unless 
the finer details of the temperature and composition profiles are of interest. 
(Refs. 31, 35). 

The specific heat of molecules for a diatomic gas depends on 
temperature when the rotational and vibrational modes are considered. In 
the following computation, this temperature dependence is neglected. Al- 
though this assumption is unnecessary in the formulation, it is adopted in 
order to facilitate a later comparison with some other work that does in- 
corporate it. 
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5.2 Boundary Layer Equations 

A weakly dissociated diatomic gas such as oxygen is assumed 
to flow over a flat plate at hypersonic Mach number where considerable 
viscous heating occurs within the boundary layer. The external flow is con- 
sidered to be such that the dissociation level at the edge of the boundary 
layer does not change. Interaction effects that may arise from the self- 
induced pressure field due to the rapid growth of the boundary layer near 
the leading edge are considered. 

The conservation equations given in Sec. 2. 1 are generalized 
to include molecular dissociation. The effectsof radiation and thermal 
diffusion are neglected, and only two-dimensional cases are considered. 

Continuity: 

aeu LP=o 
bu+ 32 

x-momentum 

energy: 

(5.2) 

Species continuity: (Ref. 30) 

(5.4) 

where C; is the mass fraction of the species. For a binary gas only, 
the species continuity equation for the mass fraction of atoms is required. 

The boundary conditions are: 

aty=O 

either 

or 

either 

u=o 
v=o 
H = Hb for the heat transfer case 

hk.4 
=i=* 

for the adiabatic wall (5.5) 

CA =o for the fully catalytic wall 

or for the fully non-catalytic wall 

28 



aty=a3 
u = UC0 

H = Ha 
CA = Ce 

The equation of state for the mixture is 

% 
2-( I+ C4) l- 2 MA 

The coordinate transformation 

(5.6) 

(2.7) for the two-dimensional flow is 

(5.7) 

The equations for the conservation of momentum, energy, 
and chemical species then have the form 

Momentum: 

Energy 

(5.8) 

where f=J .+-I 

9 =H 
He 

z = CA 
-G- 

hi= 
%c1- +" 

(5.11) 
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It is more convenient to use the following approach by formulating an 
energy equation which does not include the dissociation energy (Ref. 37). 
The total enthalpy is given by: 

(5.12) 

where, in general, when Cp is a function of temperature and for constant 
pressure across the boundary layer 

(5.12a) 

Since 

and 

therefore 

7&-4, h- x.4 

Thus we have for the total enthalpy 

(5. 12b) 

(5.13) 

t-f = 4% + al.; + $A’ (5. 14) 

The partial enthalpy is defined as 

The partial enthalpy equation can then be derived by multiplying the 
species equation by ?I,” Ce and subtracting the resulting equation from 
the energy equation; the final form is 
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where gT = HT 
ttx 

With our assumptions, we can now integrate the momentum, 
the partial energy, and the species equations across the boundary layer. 
The following integro-differential equations are obtained: 

f rl’lb 
(5.17) 

(5. 18) 

(5. 19) 

The subscript 7 refers to partial differentiation with respect to 11 . 

5. 3 Chemical Reaction Term 

The chemical kinetics are taken to follow the reaction 

kd 
A> + X - A, +A, +x (5.21) 

IQ 

where Al, A2, and X represent the atoms, molecules, and inert collision 
partners, respectively. The law of mass action yields the rate of change 
of concentration of atoms per mole of the mixture for the above reaction 
(Ref. 38) 

(5.22) 
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where [All , LA21 , and [ X] represent the mole concentration of the 
atoms, molecules, and inert collision partners, respectively. When the 
mole concentrations are written in terms of the mass fraction of atoms, 
CA, we have 

[A] = J$ 

[Aa] = w (5. 23) 

Thus we have 

(5. 24) 

The ratio kd/k, can be evaluated at the equilibrium con- 
dition, and is defined as the equilibrium constant based on mole concen- 
tration. At equilibrium, the net mass production rate is zero, thus 

(5. 25) 

where Kc is the equilibrium constant based on mole concentration. The 
mass production rate term is 

(5. 26) 

In the examples we will compute below, oxygen is consider- 
ed as the working medium. We follow Chung and Anderson (Ref. 31) by 
choosing the transport properties for oxygen as 

(5. 27) 

where p is in atmospheres and T is in degrees Kelvin; K P is the equili- 
brium constant based on partial pressure. 

The final expression of the reaction term becomes 

3.46 y 10Z2 
y= 7-4 (5. 28) 
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In the transformed coordinates, the reaction term appears 
both in the species equation and the partial energy equation in the form, 
from Eq. (5. 26) 

(5.29) 

The quantity z ’ = 4 kv (&)’ can be interpreted as the reciprocal of a 
characteristic time for the reaction. The quantity 

(5.30) 

is a characteristic ratio of flow time to reaction time. Thus 6~ Ode- 
notes that the reaction is nearly chemically frozen and 6-+ co corresponds 
to the near-equilibrium condition. On a slender body or a flat plate, the 
flow is chemically frozen at the leading edge ( 6- 0). Non-equilibrium 
processes develop as the flow proceeds downstream. The equilibrium con- 
dition can only be reached far downstream where the recombination rate is 
equal to the dissociation rate. The reaction term vanishes when the flow 
reaches equilibrium. 

5. 4 Skin Friction, Heat Transfer, and Displacement Thickness 

The shear Cb on the body surface is 

and the skin friction coefficient is defined again as in Eq. (3. 7) 

In the transformed coordinates 

(3.8) 

In the following case we will consider the degree of dissociation to be 
Small, i.e., CALL 1. With this simplification and with the self-induced 
pressure in mind, the skin friction coefficient can finally be put in the 
following form 

(5.32) 
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and we have used the hypersonic small disturbance theory where u, N- uo,. 

From Eq. (5. 32) we can see that for a slightly dissociating 
gas the effect of dissociation on the skin friction appears through the 
gradient of the velocity profile for a specified pressure distribution since 
dissociation affects the momentum equation (5.8) through the density in the 
pressure gradient term only. For a slender body with a highly cooled sur- 
face this pressure gradient term is very small. Thus the velocity profile, 
and therefore the skin friction, is practically unaffected by slight dissocia- 
tion. 

The heat flux through the boundary layer to the wall for a 
dissociating gas is 

(5.33) 

When these terms are written in terms of the transformed 
coordinates and in nondimensional form we have 

We define the heat transfer coefficient as 

- b 
cr. = 

e ,um(%-Hb) 

With the slight dissociation assumption, we can write 

(5.33a) 

(3. 9) 

(5.34) 

We can see from Eq. (5. 31) that the heat transfer to the 
body surface is accomplished by conduction due to the temperature gradient 
and the release of energy due to recombination of atoms diffused onto the 
surface of the body. 

Since we are interested in the self-induced pressure effect, 
the displacement thickness which will be used in the following calculation 
is now written as 
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Again we have made use of the slight dissociation simplifica- 
tion for the coordinate transformation. 

5. 5 Method of Solution 

The solution of the three coupled partial differential equations 
(5. 8), (5. 9), and (5. 10) can only be obtained by numerical integration. 
Blottner (Ref. 32) has demonstrated this approach and several particular 
solutions were obtained. Since the reaction term depends explicitly on the 
distance from the leading edge, similar solutions in the same sense as for 
a perfect gas do not exist even for a flat plate without pressure gradient. 
However, if the boundary layer characteristics depend only weakly on 5 , 
then we may assume a priori that the dependent terms are small in magni- 
tude in comparison with the rest of the terms and can be dropped from the 
equations. Thus we obtain a set of ordinary differential equations with all 

\ -dependent quantities evaluated locally. Solutions of these equations for 
a particular case were also obtained by Blottner (Ref. 33). These were com- 
pared with the exact solutions obtained by solving the complete set of partial 
differential equations. It is interesting to note that the gradients of the tem- 
perature profile and the atom mass fraction profile from the local similar 
solutions deviate by less than five percent from the exact solution at a dis- 
tance of five feet from the leading edge for the case Blottner computed. 
Thus it is convincing that the local similar solutions still provide a fairly 
good approximation to the exact solutions. 

With the local similarity assumption, we can now drop all 
terms containing derivatives with respect to 1 and make all 5 depend- 
ent quantities assume local values. Equations (5. 17), (5. 18), and (5. 19) 
are simplified to 

(5. 36) 

(5.37) 

(5. 38) 

The temperature profile which appears explicitly in the mass production 
term is determined from the partial enthalpy and the velocity profiles, 

(5.39) 
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If cpm is assumed constant, then 

(5.40) 

It was already noted that this assumption is unnecessary in the calculation 
and that it was adopted for convenience in order to facilitate a later compari- 
son with some other work that incorporated this assumption. 

The first step in solving these equations is to assume appro- 
priate profiles for the velocity, the partial enthalpy, and the atom mass 
fraction. A sixth degree polynomial is assumed for the velocity profile, 
and a seventh degree polynomial for the partial enthalpy and the atom mass 
fraction profiles (Refs. 3 1, 39). Thus 

(5.41) 

where 
p f (5.41a) 

and 

(5. 41b) 

Five boundary conditions are required to determine the 
coefficients of the velocity profile polynomial. One coefficient is left to 
be determined by the equations. Similarily, six boundary conditions are 
required for the partial enthalpy and the atom mass fraction profiles, re- 
spectively, and the rest of the coefficients are determined by the equations. 
Besides the boundary conditions given in Sec. 5. 2, additional conditions 
can be obtained by differentiating the equations with respect to 1 and sat- 
isfying them on the body surface. 

Thus we have ‘for the velocity 

po += 0 

fq = 0 

r-1 : $7 =I 

-F7,, = 0 

f ‘1 ‘1 I =o 

(5. 42) 
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For partial enthalpy 
r--o : 9r= QTb 

(5.43) 

y=I ; j-r=I, 4q= 0 , jtryl= 0 
For atom mass fraction 

r-0 I 8: 0 for a fully catalytic surface 

(5.44) 

T-l ; -t= I, tq=t3. t 10 = 0 
From the momentum equation, we can see that the pressure 

gradient parameter 

can be written through the coordinate transformation 

(5.45) 

(5.45a) 

For a small pressure gradient and very cold body, gTb -+ o , a2 has a 
very small value. In fact, the coefficients of a2 in the equations are also 
small after the polynomial profile is determined. Thus all terms contain- 
ing a2 are very small in comparison with the others and can be neglected. 
Physically, this means that the pressure gradient effect is extremely small 
in these equations. With the pressure gradient term neglected, the mo- 
mentum integral equation decouples from the other equations and reduces 
to a simple algebraic equation. The solution of this equation is of the form 
(Ref. 39) 

-F1 = 2 3 - J-14 + L 5’ - 2p (5.46) 
- 

and 6 is given as 
-1 
5 

rao12 =I 
?S3 

2 = 4,10 
(5.47) 

By choosing bl and cl to be determined by the equations, 
the coefficients of the polynomial profiles for gT and & are determined 
by the boundary conditions (Ref. 39) 
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b,= tb=O 

b4 = 35(1-tb)- lob, - loba -4b, 

b, = -g4( I-tb) +4rb, + 2ola d 6b, 

b6 = 70 ( I - &) - 30 b, - lsb, - 4bA 

6, = -ro(~-2,) + IO b, + 4br * bs 

and 

(5.48) 

(5.49) 
G= 35(l-y~)-10CI-IOC~-4cJ 

tr = -84(1-jn)+ 45~,410c~ +6c, 

Now the two integrals A and A* which appear in Eqs. 
(5.37) and (5.38) respectively, become 

15-l 
A =A+( +f.&- qr,c,- (5.50) 

36djbo 
-c, - AC, 
qaaq I.1012 

The chemical reaction term 
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can be written with the small dissociation assumption 

A simple iteration scheme can be constructed to solve for 
bl and cl from Eqs. (5.37) and (5. 38). By eliminating the chemical react- 
ion integral from both equations, we obtain an algebraic relation for bl and 

where ce = 0 is assumed for the species integral equation (5. 38). 

The species equation gives 

(5.53) 

(5.54) 

For a given pressure distribution ~cCX) I we can solve equations (5. 53) and 
(5. 54) for bl and cl. Once this is done, boundary layer characteristics 
follow immediately. Although the pressure gradient is neglected in the 
computation of the velocity profile, the effect of pressure still appears ex- 
plicitly through the chemical reaction term since the chemical reaction 
rate is governed by both temperature and pressure. 

In Eq. (5. 48), both the coefficien{s b2 and bg are directly 
proportional to [ We)( dx/dy ) “I %/UC which is very small when the velocity 
Ue is very large. Thus b2 and b3 can be neglected in comparison with bl, 
hence 

b> =o 

b, =o 

It follows directly that 

(5.55) 

Equation (5. 53) reduces to 
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Since gb and c2 are known, this equation gives a direct relation between bl 
and cl. With b2 = b3 = 0, and for zero pressure gradient, Eq. (5.54) can 
be solved for x, 

(5. 58) 

The function w 
e 

is given by Eq. (5. 28). It consists of functions of T and 
c which can be computed once bl and cl are specified. Therefore, if bl is 
assumed, then cl follows from Eq. (5.57) and their x dependency is deter- 
mined from Eq. (5. 58). 

5.6 Boundary Layer Self-Induced Pressure 

From the previous sections, it is known that the dissociation 
rate depends strongly on pressure. Thus the induced pressure gradient due 
to the boundary layer displacement thickness may alter the dissociation rate 
considerably from that of a uniform pressure distribution. 

The displacement thickness for a weakly dissociating boundary 
layer is given by Eq. (5. 35) and rewritten here as 

where 

and 

(5.59) 

(5.40) 

The external flow is assumed to have a fixed degree of 
dissociation. For flow past a slender body, strong dissociation may occur 
in the inviscid flow only at a short distance from the leading edge where 
the shock wave is strong. This effect has been examined by Inger (Ref. 36). 
He shows that the failure to properly match the viscous flow reaction rate 
at the outer edge of the boundary layer to the inviscid flow rate will usually 
cause only a small error in solving the boundary layer equations. Thus 
except in the strong interaction region, the assumption that the dissociation 
level at the edge of the boundary layer does not change provides a good 
approximation. 

For frozen flows, or flows without dissociation, the tangent- 
wedge relation again can be used to compute pressure distribution. As be- 
fore, the tangent-wedge formula gives, Eq. (4. 3) 
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where Y is the frozen specific heat of the external flow. This expression 
can be reversed to have Be in terms of pe/pa. If this is done, it can be 
integrated to yield 6’ (see also Appendix B) 

I 7 I ,*=J=: (5. 60) Y(t+f) Me 

With the displacement thickness (5. 59) we can formulate an 
expression suitable for computing the pressure distribution 

This expression is suitable for an iteration scheme. Once 
the pressure distribution is obtained, we can then compute all required 
boundary layer characteristics such as skin friction and heat transfer. 

5. 7 Example and Discussion 

From the previous outline, we know that for a nonequilibrium 
chemically reacting boundary layer similar solutions do not exist in general. 
The chemical reaction term depends strongly on the magnitude of the local 
pressure and the velocity of the external flow. Thus for each case which 
is computed, the pressure and the velocity of the external stream must be 
specified. 

A special example was computed in order to show the magni- 
tude of the effects for a nonequilibrium dissociating boundary layer. The 
case chosen was a flat plate with fully catalytic wall with the following con- 
ditions, (equivalent to the standard atmosphere at 100, 000 ft. of altitude) 

UC0 = 25,004 ft/s,. 

Tb - --3, 720 PI- = 0.7, Le = 1.4 

Both the Prandtl number and the Lewis number were assumed constant. 
A complete solution of the partial differential equations and the “similar” 
solutions of the corresponding ordinary differential equations was obtained 
in Refs. 32 and 33 for a flat plate with zero pressure gradient for the same 
conditions. Thus a direct comparison of the present results with these 
more exact solutions was possible. 
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The solutions obtained by the present approximation for a flat 
plate with and without self-induced pressure gradient are shown in Figs, l9a 
and b. Typical temperature and atom mass fraction profiles at distances 
of 0 ft, 1 ft and 10 ft from the leading edge of the flat plate are shown in 
Figs. 19c and d. At the leading edge, the boundary layer is chemically 
frozen. Since the external flow is assumed to be undissociated, no atoms 
are produced in or diffused into this region, therefore, the atom mass 
fraction is zero. When dissociation develops downstream, the atom mass 
fraction increases, and as energy is absorbed in the process, the tempera- 
ture consequently decreases. It can be seen that the dissociation takes 
place mainly in the high temperature region where the viscous dissipation 
is large. Atoms then diffuse into the outer portion and the portion of the 
boundary layer near the wall and combine there. Figure 19a shows the 
temperature gradient at the wall up to 10 ft from the leading edge and Fig. 
19b shows the gradient of atom mass fraction at the wall for the same dis- 
tance. The “similar” solutions by Blottner are also shown in the figures. 
The solutions obtained by the present approximation are about 4 percent too 
high for the temperature gradient and 20 percent too high for the atom mass 
fraction gradient. This large error in the atom concentration gradient is 
believed to be caused by the polynomial approximation of the atom mass 
fraction profile. It is well known that a polynomial type of approximation can 
give reasonable results if the represented variable possesses a simple geo- 
metric profile which varies monotonical.ly from zero to its maximum value, 
such as the velocity profile with a favourable pressure gradient or the total 
enthalpy profile. In this case, the polynomial approximation gives a rea- 
sonably accurate result for the partial enthalpy profile which possesses a 
simple form. However, poor results are obtained for the atom mass 
fraction profile which has a more complicated form. Thus one improve- 
ment of the present approach woeuld be to employ the total energy equation 
and the partial energy equation instead of the atom concentration equation 
so that these two simple geometric profiles can be represented more 
accurately by polynomials” The atom mass fraction could be obtained 
from the difference of these two profiles. 

The pressure gradient due to the self-induced pressure tends 
to increase the dissociation as shown in Fig. 19b. This can be seen through 
the atom mass production term Eq. (5. 29). As the pressure increases, the 
collision rate of the species also increases. The net result is to decrease 
the characteristic time for the chemical reaction given in Eq. (5.30), and 
consequently, the equilibrium condition will be reached more quickly than 
at a lower pressure. An increase in the dissociation rate also causes a 
corresponding absorbtion of flow energy in the form of dissociation energy 
and a consequent decrease of temperature as shown in Fig. 19a. 

It is important to note that the integral method can still yield 
good results for integrated properties although the detailed profile may not 
be satisfactory. This is demor.strated by Karman’s original approach (see 
for example Ref. 6). Figure 20 shows the displacement thickness of the 
boundary layer with and without self-induced pressure gradient. Blottner’s 
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exact solution is a.lso showr. UF: to 5 ft. The agreement of the present results 
with the exact solution is reasonably good. Since the displacement thickness 
determines the local pressure field, tke -lose agreement of approximate and 
exact solutions is encouraging. The displacement thickness with self-indu.ced 
pressure gradient is also sho,>Kn in Fig. 20. It gives a slightly lower value 
than that with zero pressure gradient up to about 3 ft and then becomes higher 
downstream. Th.e disp!.ac ement thickness of a perfect gas without pressure 
gradient is also shown in the figure. it is thicker than the corresponding 
dissociating boundary layer. This is because the dissociating boundary layer 
has a higher average densi,l:y, (i. e., a lower.average temperature) due to the 
absorption of energy by dissociation and is consequently thinner thnn ir, the 
perfect gas case. 

The induced pressure distribution for the dissociating case 
appears in Fig. 2 I.. The pressure distribution ob-tained for a perfect gas is 
also shown. In general, the induced pressure is lower in the dissociating 
case than. in the perfect gas case owing to the thinner displacement thickne.;s 
in the dissociating case, as discussed above. 

Figure 22 shows the heat transfer coefficient along the pl.ate. 
The value for the perfect gas case is a.!so shown. It is interesting -lo see t%at 
although the heat t,ransfer is in general only slighti:? greater tha.n for the per-- 
feet gas ca.se, the difference is insignific:2nt. This can be seen from %he 
expression for the heat transfer. coefficien-t in Eq. (5. 34). If we recall the 
expression of total enthalp;y Eq. (5. 14), the gradient on the surface is 

and the heat transfer rate, Eq. (5. 33a!, 

Thus if Le = 1, ;hen the heat 1’11~~. is directly proportional to the total 
enthalpy flux as for a per?ect gas. Thus the slight difference in these two 
cases comes from the effect oE Lew.s number or the diffusion effect. Since 
the Lewis number is o:lly slightly dit’ferent from unity, the heat transfer in 
both ca.ses will be very similar- For a fully catalytic surface the atoms 
striking the coid surface 1-e: ombine there immediately. The heat transfer 
is approximately -the same as th.e cwrgy transfer and is determined p.ri- 
marily by the difference in entha?.y,y between the hot gas and the cold sur- 
face. Wheth.er the atoms rec0rnbir.e in the boundary layer or on -the wal!., ‘the 
mechanism of heat transfer does not play a significant role in such a process. 
The energy is transportEd A a.pproximately the same rate whether it IS 

carried in the active modes as translational and rotationai energy by a 
molecule, or in the inert modes as energy of dissociation by an atom (Ref. 
5). 
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6. CONCLUDING REMARKS 

An approximate method of solution of the compressible 
laminar boundary layer equations has been developed. The method is bas- 
ed on the concept of a combination of integral relations and similarity 
solutions, which was originally introduced by Thwaites for the case of in- 
compressible flow. In the classical approach, the momentum integral 
equation is used while the energy equation is usually ignored. Therefore, 
under certain conditions this procedure yields the temperature field with 
low accuracy and predicts the ,velocity field more accurately. In order to 
improve the prediction of heat transfer, the energy integral equation must 
also be considered in the formulation of the integrai relations. The basic 
difference between the present approach and the classical momentum in - 
tegral methods is that the energy integral equation is also fully used in the 
derivation of the fundamental integral relation. Therefore the variation of 

the ratio of the energy defect thickness to the momentum defect thickness, 
which has a strong effect on the computation of heat transfer, is taken into 
account. This approach improves the accuracy of the prediction of heat 
transfer. 

Using a linear approximation for the correlation parameters, 
the basic equation can be integrated analytically. Its solution, results in 
a determination of the velocity gradient parameter (m) for a given external 
velocity distribution and specified surface temperature. This is the first 
step in. solving for the boundary layer characteristics, which then follow 
immediately from the correlation parameters. The resulting equation is 
then reduced to a form which is suitable for the computation of boundary 
layer properties in hypersonic flows. 

The application of this formulation is illustrated by solution 
of the hypersonic self-induced pressure interacti.on problem. The ex-terna. 
local pressure field and the local flow inclination ‘are rela,ted by the tangent- 
wedge relation for two-dimensional flows and the tange.nt-cone relation for 
axisymmetric flows. The present method makes it possible to construct 
solutions valid throughout -the complete interaction range. Solutions are 
compared with available experimental results and more exact solutions by 
other authors and the agreement is good. This shows that the use of the 
energy integral equation in the formulation of the boundary-layer integral 
relation is important, especially in the calculation of heat transfer. 

The present method does not give explicit analytical soiutions 
to the pressure interaction problem because of the complexity of the result- 
ing integro-differential equation. However, this equation can be solved by 
using a successive approxima.tion scheme that involves only simple numeri- 
cal integrations. 

With the present integral method and the local-similarity con- 
cept, closed form solutions to th.e pressure interaction problem can also be 
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obtained but with relatively low accuracy. However, the present method 
using the integro-differential equation does provide a simple approach that 
gives a higher accuracy solution than the local-similarity method and with 
much less effort than is required for the exact numerical solutions. This 
may have worthwhile practical applications. 

Real gas effects arising from nonequilibrium dissociation in 
the boundary layer due to the high viscous dissipation at hypersonic speed 
are also examined for the pressure interaction problem. A weakly dissociat- 
ing diatomic gas, such as oxygen, is used as a model. It is found that for 
a body with a fully-catalytic surface, the occurrence of dissociation tends 
to reduce the interaction effect sl.ighr.ly due to a decreased boundary layer 
displacement thickness. Th.e increase in heat transfer due to the recom- 
bination of atoms at the wall is small in comparison with the perfect gas 
case. The simplified example used to illustrate this type of flow provides 
useful insight and it is possible to extend the method to actual cases by 
using correct thermodynamic conditions and dispensing with the local- 
similarity concept. 
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TABLE I 

P 

2.00 

1.50 

1. 00 

.50 

.30 

0 

-. 10 

-. 1295 

Summary of Correlation Parameters 
for gb = 2, Pr = 1 

m 

.4451 

.3192 

. 2053 

.1009 

. 0614 

0 

-. 0228 

-. 0283 

L 

.4406 

.4255 

.4091 

.4026 

.4086 

.4410 

. 4567 

.4368 

iii 

.0045 

.0093 

.0156 

.0188 

. 0167 

0 

-. 0147 

-. 0209 

i 

.0033 

. 0127 

.0304 

. 0748 

. 1108 

. 2205 

.2940 

.3220 

f Wb 

2.4878 

2. 1402 

1.7318 

1. 2351 

. 9829 

.4696 

. 1805 

0 

_-_~ 
Cf 

/ Ch 

7.5240 

6.6621 

5.6444 

4.3174 

3.6023 

2.0000 

.8951 

0 

Note: These results were calculated from the similarity solutions listed 
in Ref. 10. 



I I 

; 

0.4 0.0791 
0.40 0.0 0.0 

0. 1 0.0204 
0.2 0.0399 
0. 2857 0.0561 
0.4 0.0774 

0.60 0.0 0.0 
0. 1 0.0171 
0. 2 0.0321 
0. 2857 0.0439 
0.4 0.0585 

CO. 8191 0. 0 0.0 
0.8123 0. 1 0.0108 
0.8066 0.2 0.0189 
0.8025 0. 2857 0.0244 
0.7977 0.4 0.0301 

TABLE II 

Summary of Correlation Parameters 

B I r 

0. 1980 
0.2095 
0.2193 
0.2268 
0.2356 
0.2336 
0. 2531 
0.2686 
0.2798 
0.2928 

0.2008 
0. 2098 L 0.2175 
0.2235 
0. 2308 
0. 1869 
0.1957 
0.2030 
0.2083 
0.2147 

0.2455 0. 1208 
0.2704 0. 1241 
0.2889 0. 1263 
0.3018 0. 1277 

0. 2830 0.0 
0.3135 0.0 
0.3166 0.0 
0.3296 1 0.0 

t(F 

0.3001 
0.2288 
0. 1691. 
0. 1248 
0.0736 
1.0000 
0. 9169 
0.8518 
0.8038 
0.7480 
1.5474 
1.4726 
1.4179 
1.3779 
1.3341 
2. 1465 
2.0740 
2.0267 
1. 9976 
1.9701 

Q  L 

1.0072 0. 3988 
1.0604 0.3964 
1. 1063 0.3953 
1.1414 0.3952 
1.. 1827 0.3959 

3.8945 0.4205 
0. 9601 0.4081 
1. 0178 0.3990 
1.0621 0.3930 
1. 1164 0.3870 

I 

0.7017 ( 0.3663 

0.0 0.1505 8.8215 0.0 I-- 

0.8391 0.2829 1.9882 
0.7107 0.2885 2. 1180 
0.6146 0.2932 2.2307 
0.5494 0.2973 2.3155 
0.4805 0.3023 2.4176 
2.2221 0.2806 2.2364 
1.9120 0.2825 2.4828 
1.6844 0.2845 2.6928 
1.5289 0.2861 2.8536 
1.4382 0. 2864 3.0444 
4.3482 0.2104 2.8515 
3.8875 0.2056 3.2972 
3.5459 0.2013 3.6843 
3.3057 0. 1982 3.9848 
3.0427 0.1943 4.3490 
9.9005 0.0 --- 
9.4495 0.0 m-w 
9. 1609 0. 0 --- 
8. 9856 0.0 m-m 

Note: These results were calculated from the similar solutions of the laminar boundary layer equations under 
the conditions that Pr = 0.7, u2A!-tr-l, listed in Ref. 14. 

g’c Adiabatic wall condition 



TABLE III 

Summary of Linear Approximate Values for Correlation 
Parameters 

gb 

0.15 

0.40 

0. 60 

liabatic 
Wall 

A B cx 

0.3988 0.12 1. 983 

0.4205 0.60 1.914 

0.3663 1.49 1.787 

0. 2532 3.39 1. 516 
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TABLE IV 

Summary of Coefficients for Asymptotic Solutions of Pressure - 
Distribution 

Weak Interaction 

a1 bl I 
d* d+ 

--e-m 
0.115 
0.192 
0.250 
0.314 

------ 0. 1254~* 
0.0057 0.205 
0. 0157 0.342 L 0. 0267 0.446 
0.0422 0. 560 

0.145 
---me 
---mm 
--m-e 

0. 556 

*d is defined as d = $b 

** Extrapolated from other values, Pr = 0. 7. 

+ Results from Ref. 5 for Pr = 0. 725. 

Strong Interaction 

0.0 - 
0. 15 
0.40 
0.60 

diabatic 
Wall 

0. loo* 0.501* 0.149 ------ 

0.177 0.503 --mm- ------ 

0.302 0.515 ----- ----_- 

0.390 0.537 m-m-- -m-m-- 

0.483 0.581 0.515 0.759 

* Extrapolated from other values, Pr = 0. 7. 

** Results from Ref. 5 for Pr = 1. 0. 
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TABLE V 

Relations of K2, n, pe/pa for a Flat Plate from Local Similar Solutions 

K2 

0.1 0.316 -0.171 1.54 
0. 2 0.448 -0.220 1. 82 
0.3 0.548 -0.252 2. 06 
0.4 0.633 -0.276 2.29 
0.5 0.708 -0.295 2.50 
0. 6 0.775 -0.310 2.70 
0. 7 0.837 -0.322 2. 90 
0.8 0.895 -0.333 3.10 
0. 9 0.950 -0.342 3.28 
1.0 1.000 -0.351 3.48 
1.2 1.096 -0.365 3.84 
1.4 1. 183 -0.376 4.21 
1. 6 1.266 -0.386 4.57 
2. 0 1.415 -0.402 5.28 
2.5 1.580 -0.414 6. 15 
3.0 1.733 -0.424 7.02 
3.5 1.872 -0.433 7.88 
4.0 2.000 -0.438 8.73 

K n Pe/Pco 
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FIG. 10 
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APPENDIX A 

Momentum Integral Method 

In the discussion of Section 2.4, it has been pointed out that 
if the one-parameter correlation is used, only one equation is required to 
obtain the 5 dependency of h and x . Here we rewrite the momentum in- 
tegral and the energy integral equations, Eqs. (2. 15 and 2. 18) as 

glb 
-EY-Gc)= (2. 18) 

Multiply Eq. (2. 15) by 8 and Eq. (2. 18) by ii and rearrange, results 

(2.20) 

(2.21) 

In the method of momentum integral (Ref. 3), the energy 
integral equation is ignored and the momentum integral equation alone is 
used. If the following relations are defined: 

(A. 1) 

1 = O%,b (A. 2) 

(A. 3) 

f+= h (A. 4) 
0 

Then the momentum integral equation (2. 20) can be written with the defina- 
tions of (A. l), (A. 2) and (A. 4) as 

&I 
Gf!$.!k)=i (A. 5) 

where 

i=]- 2=( I+ I-AF) (A. 6) 
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Equation (A. 5) can be integrated if L is assumed as a function of % only, 
for a given surface temperature. This is the basic assumption of the one- 
parameter integral method and in Thwaites’ or Cohen and Reshotko’s 
approach (Refs. 1 and 3), the functional relation L(E) is provided by the 
exact similarity solutions. If a peicewise linear approximation for the 
function c(m) is used, such that 

i=A-gi;; (A. 7) 

Then Eq. (A. 5) becomes a simple first order ordinary differential equation 
and can be integrated to yield iii 

(A. 8) 

and the constant C is determined at 7 = {. . as 

c = a= 5 (A. 9) 

If the integration starts from the leading edge, then C = 0. 

Once the dependency of i?i on x (or r ) is known, the boundary 
layer characteristics follow directly from the correlations which are based 
on the similarity solutions. 

Equation (A. 8) can be transformed back to.the physical 
coordinates as 

(A. 10) 
+ 2 p”-‘( I - P%‘,J~-‘~, dx ] 

The skin friction coefficient is given as 

(A. 11) 

(A. 12) 

and the modified Reynolds’ analogy gives 
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ZiL 
Glh = 

3 -&lb 
%.b (A. 13) 

where 
I - %b 

Cfb = 2G/et.uL= 

R 4Xb = 
g,u*x 

/ub. (A. 14) 
G, = -qL 

fbW ( He- l-lb) 
are the skin friction coefficient, the local Reynolds number and the heat 
transfer coefficient respectively with reference to -the surface conditions. 

In the one-parameter method, however, the energy integral 
equation can also be used to solve the problem with a suitable correlation 
based on the similarity solutions. The results obtained by the momentum 
integral and the energy integral equations are not the same in general. 
This has been shown in Refs. 4 and 5 that only if the thicknesses ii and 0 
are proportional to each other over the entire range of consideration, that 
these two equations will yield a similar result. 

The momentum integral equation (A. 5) is 

IA. 5) 

and the energy integral equation (2. 21) can be written with the definations 
(A. 1) and (A. 3) 

(A. 15) 

or by expanding the left hand side, 

If A/@ is constant through0u.t the entire range, then the second term at 
the right hand side of Eq. (A. 16) becomes zero. For s im ilar ity solutions, 
the boundary layer characteristics do not depend on 3 , Eqs. (2. 15) and 
(2. 18) yield 

(A. 17a) 

or 

Therefore, if z/s is constant, then Eq. (A. 17b) shows immediately that 
Eq. (A. 7 ) and Eq. (A. 16) yield a similar result. 

However, in general, these thicknesses n’ and Q are not pro- 
portional to each other over the entire range of consideration. The varia- 
tion of the ratio will appear in the second term at the right hand side of (A. 16) 
and will effect the computation of heat transfer. The discussion of taking into 
account of this point within the base of the one-parameter method is given 
in Section 2.4. 
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APPENDIX B 

Solution of the Pressure Interaction Problem by Iteration 

The system of equations developed in the Section 4. 1 for the 
computation of the pressure interaction problem are rewritten here as 

and the tangent-wedge relation 

(4.7) 

(4. 8) 

(4. 9) 

In principle, a certain pressure distribution is assumed, which in turn 
yields the pressure gradient parameter m as a function of a and thus the 
value of (1 + w2/(1 + Q2). Then the displacement thickness Ai is compu- 
ted. A new pressure distribution is then calculated by the tangent-wedge 
relation using the computed local displacement thickness. The procedure is 
then repeated until convergence is reached. 

It is noted that the value of the parameter (1 + m2/(1 + Q2) 
varies only slightly through the whole pressure range of the problem, 
especially for a very cold surface (see Fig. 7). Thus a mean value is 
chosen for this parameter for a given total enthalpy ratio gb and is held 
constant through the computation. If this is done, the pressure distribution 
can then be calculated by using Eqs. (4. 8) and (4. 9) only. 

At the leading edge x-0, and ?i - co. It is difficult to 
choose the starting point x0 for the numerical integration and estimate 
the initial pressure near the singularity. Numerical instability did arise 
due to small errors in the initial estimation. Thus a further transformation 
is desirable so that the singularity at infinity is transformed back to the 
origin. Introduce the following transformation 

ZJ- 
% (B. 1) 

P= c, 
+- 

(B. 2) 

then the Eqs. (4. 9) and (4. 8) reduce to 

(B. 3) 

03.4) 
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The tangent-wedge relation can then be integrated to yield the displacement 
thickness 

03.5) 

Eliminating the displacement thickness from the above 
equations, we obtain an expression suitable for iteration procedure 

PC?-)= I K(r+4,0-l,2 $sj3 
1 ,-,~Jo’,,$+L 3 03. 6) 

i 
* p’-ddt 

The quantities in the first bra>ket and d are now all con- 
stant and depend only on the specified gb. For a given initial pressure 
distribution, we can calculate a new f’(t) by performing two integrations 
inside the second bracket. In the present computation, the asymptotic 
solutions of the strong interaction are used as initial values for the itera- 
tion. The results show that only five iterations are needed to give accur- 
acy up to five digits. 
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APPENDIX C 

Method of Local Similarity 

The local similarity method is based on the condition that 
the external flow and the body properties vary sufficiently slowly with the 
x-dependent variable 5 . If this is the case, then derivatives with re- 
spect to 5 of the boundary-layer dependent variables are small compared 
with the corresponding ~7 derivatives. So that the right hand sides of the 
transformed boundary layer equations (2. 9) and (2. 10) can be neglected. 
Those terns on the left hand sides which are functions of 7 are assumed 
to take on their local values and the boundary layer equations are consid- 
ered as ordinary differential equations in FJ with 5 as a parameter. 
Local similarity thus presents a “patching together” of local solutions in 
which the history of the flow is involved only in the 5 dependence of the 
definition of t’/ in the transformation (Eq. 2. 7a). 

The limit of this approximation can be shown through the 
integrated boundary layer equations (see also Ref. 14). If we write Eqs. 
(2. 15) and (2. 16) in a slightly different form, namely 

(2.15) 

(2. 16) 

the derivatives of the boundary layer charact.eristics with respect to [ 
appear only in the second term of both equations. 

Thus if both 

then these equations reduced to the following form with these two terms 
neglected 

where 

(C. 3) 
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is a variable depending only on the external flow condition. In general p 
is a function of 5 . If p is assumed to take on its local value and be con- 
stant locally, then the above equations give nothing more than the relations 
of boundary layer characteristics for the similarity solutions at that local 
point. The error introduced by neglecting the logarithmic derivative terms 
can be estimated with thelp of the similarity solutions. We may write for 

02.4) 

The first bracket at the right hand side contains the logarithmic derivative 
of p with respect to 5 . This term is determined completely by the ex- 
ternal conditions. The second bracket contains the logarithmic derivative 
of the momentum thickness with respect to /3 and can be estimated with the 
help of similarity solutions. Thus if both terms are small, the error intro- 
duced by neglecting the t derivative term will be small and the local simi- 
larity method may provide a good approximation. Similarly we can esti- 
mate the order of magnitude of the logarithmic derivative of A with respect 
to t in the energy integral equation. Therefore, we can see that for cases 
where the logarithmic derivative of 8 and A is much less than unity, the 
method of local similarity can be used. 

The local similarity concept has been applied to a number of 
problems with success. The application of this method to the boundary 
layer problem with a self-induced pressure field was given in Ref. 14. 
With the integral method formulated herein and the use of the local similarity 
concept, solutions in closed form can be obtained for the pressure inter- 
action problem. 

Two-Dimensional Flow 

The boundary layer displacement thickness was defined by 

Through the transformation (2. 7a) 

in terms of external flow conditions 

where 

(3. 4) 

(3.4a) 

(3. 4b) 
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The derivative of the displacement thickness with respect to x is thus 

where 
f * &drx 3;= 0 P 

-F 
x P 

Here again, we assume that an effective body is formed by 
the original body and the additional thickness due to the growth of the 
boundary layer. The flow inclination at the outer edge of the boundary 
layer thus consists of the geometric slope and the slope of the displace- 
ment thickness of the boundary layer. 

The quantity ?; (x) depends only on the external pressure 
distribution. For flows over a slender body, the quantity i; (x) is a 
slowly varying function of x. Thus the logarithmic derivative of it is 
small in magnitude compared with terms of order unity. The order of 
magnitude of the logarithmic derivative of I can be estimated with the help 
of the similarity solutions. If we write 

(C. 6) 

where P is the pressure gradient parameter defined by Eq. (C. 3). We 
know from the similar solutions that I is a slowly varying function of p , 
and if (3 changes only slowly along x, we can conclude that this logarithmic 
derivative of I is small in comparison with order of unity. 

Thus if we neglect all terms with order of magnitude much 
smaller than unity from Eq. (C. 5), we have 

(C. 7) 

If we further assume that pot xn locally, and I takes the 
value from the similarity solution corresponding to the local value of n, 
then the right hand side of Eq. (C. 7) is now an explicit function of n and 
X. From the assumption pa xn, we can write (Ref. 14) 

where K is the hypersonic similarity parameter 

c3 

(C. 81 

(C. 9) 



The firstbracket on the right hand side of Eq. (C. 8) relates the pressure 
field pe and the hypersonic similarity parameter K. This term is concern- 
ed solely with the inviscid flow field and theories in inviscid flow should be 
able to provide the required relation. The second bracket consists of the 
relation between the change of K along x, i. e., the growth of the boundary 
layer along x. Thus from Eq. (C. 9) 

x dK’ 2x d& --=- 2ry d’S* 
/cl dlx eb dx + 0, a3 

From Eq. (C. 7) we can show that 

and from Eq. (C. 9) 

d6* K- Ke, 
dx= Mm 

where, 
Keb = Moo @b 

Therefore 

(C. 10) 

(C. II) 

where, the term d%m,. is neglected for a slender body. 
Hence 

Solving for n yields 

(C. 12) 

The relation of pressure to the local flow inclination is pro- 
vided by the tangent-wedge relation as 

(C. 13) 
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By using K as a parameter, n can be computed from the Eq. 
(C. 12). The pressure can then be calculated from the tangent-wedge rela- 
tion, which gives the relation of pe/poo and K. 

(C. 14) 

The relation between the parameter K and the distance x is 
provided by the boundary layer thickness relation. If the expression for 
the boundary layer displacement thickness 6* obtained by the integral 
method is used, Eq. (3. 6) 

Equation (C. lo), with the assumption p d xn, yields in closed form 

(3.6) 

(C. 15) 

where is the interaction parameter. 

Thus a functional relation of pe/pa and s is finally formed 
through (C. 14) and (C. 15). The skin friction coefficient follows immediately 
as 

(C. 16) 

where JIwJ4 is now a function of the pressure gradient parameter m, 
where 

The heat transfer coefficient can then be calculated through 
the modified Reynolds analogy once m and the skin friction coefficient are 
known, or directly as 

(C. 18) 

Hence by using K as a parameter, n and pe/poo can be com- 
puted from Eqs. (C. 12), (C. 13) and (C. 14) respectively. For a flat plate 
8b = 0, and here the quantities can be computed once and for all. The num- 
erical value of these functional relations for a flat plate are listed in Table 
V. For a body with specified surface temperature, the relation between the 
parameter K and the interaction parameter z is given by Eq. (C. 15). Skin 
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friction and heat transfer can then be computed from Eqs. (C. 16) and (C. 18) 
respectively. 

Since this method refers only to local conditions, the formula- 
tion can also be applied to cases with surface temperature varying along the 
body. In such cases, the boundary layer parameters A, d , (1 +HF)/(1+&2), 
etc. are chosen to correspond to the local gb along the surface. 

The solutions obtained by the foregoing formulation are com- 
pared with solutions obtained by using the integral method through several 
examples . The details of a discussion is given in Sec. 4. 3. 

Axisym m etric Flow 

The local similarity method can be readily applied for axisym- 
metric flow in a similar way as for two-dimensional case. Due to lack of 
information on similarity solutions with transverse curvature effect, only 
the case with negligible transverse curvature effect is considered here. In 
this case, all necessary information can be obtained through the Mangler 
transformation from the two-dimensional formulation. 

The boundary-layer displacement-thickness integral has 
been shown to be in the following form for slender bodies with a constant 
surface temperature distribution 

(4. 29) 

where, the subscript c refers to conditions on the body surface when the 
boundary layer is absent and rb is the radius of the body measured from the 
axis of symmetry. For conical body, 

(C. 19) 

The induced pressure due to the local flow inclination is 
approximated by the tangent-cone relation. If 

then for Ke >> 1, we use Lees’ results (Ref. 26) for slender cones when the 
conical shock wave is not too far away from the cone surface. The relation 
is in the form 
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(C. 21) 

where KS = M,9,, 9, is the half angle of the conical shock and K, = M,0,, 
Kc = Mcoec. 

The relation of KS and K, can be approximated by the form 
(Ref. 26) 

*=JF$ (C. 22) 

Following the approach of the two-dimensional case, we can assume again 
that pc~ xn . By taking n to be a constant locally, we can derive the varia- 
tion of n as 

The term is given by the tangent-cone relation 

(C. 23) 

(C. 24) 

Thus by using Ke as a parameter, we can calculate the value 
of n along the body from Eqs. (C. 23) and (C. 24). The pressure distribution 
is calculated by the tangent-cone relation Eq. (C. 21). The relation between 
Ke and the interaction parameter gt can be derived from the boundary- 
layer displacement-thickness integral (C. 19) as 

(C. 25) 

Here pc is the pressure on the cone surface when the viscosity effect is 
absent. The pratio of pc/pa can be obtained from standard conical flow 
solutions (Ref. 27). 

Similarly, the pressure gradient parameter m is given as 

m=-&L* n (C. 26) 
fl61-1.,+3 

and the skin-friction coefficient as 
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(C. 27) 

The heat-transfer coefficient can then be calculated through 
the modified Reynolds analogy once m and the skin friction coefficient is 
known, or directly as 

C8 

(C. 28) 
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